Geometry by Construction: Object Creation and Problem-solving in Euclidean and Non-Euclidean Geometries By Dr Michael McDaniel

Geometry by Construction: Object Creation and Problem-solving in Euclidean and Non-Euclidean Geometries By Dr Michael McDaniel Paperback 1627340289 9781627340281 Geometry by Construction: Object Creation and Problem solving in Euclidean and Non Euclidean Geometries College geometry students, professors interested in undergraduate research and secondary geometry teachers will find three rich environments in this textbook. The first chapter contains many of the standards of Euclidean college geometry. The second and third chapters introduce non Euclidean models where some Euclidean rules hold and others do not. With emphases on constructions and proofs, the reader is encouraged to create the objects under investigation and verify the results with reasoning. Since both models of bent spaces exist in Euclidean geometry, the reader gains facility with Euclidean moves through the whole book, even while exploring non Euclidean spaces. The book itself is meant to be unpacked, expanded and taken further, just like the problems it contains. Geometry by Construction challenges its readers to participate in the creation of mathematics. The questions span the spectrum from easy to newly published research and so are appropriate for a variety of students and teachers. From differentiation in a high school course through college classes and into summer research, any interested geometer will find compelling material. Teachers and professors might especially appreciate the way constructions provide open ended questions which resist internet searches for solutions. College students should find the five refereed results from undergraduates like themselves encouraging. The active reader joins the mathematical tradition of a laboratory being a notebook plus a compass and ruler (or a dynamic geometry program on a computer.) New ideas await exploration and here are examples!

Geometry by constructiononline software

Any interested geometer will find compelling material Teachers and professors might especially appreciate the way constructions provide open ended questions which resist internet searches for solutions College students should find the five refereed results from undergraduates like themselves encouraging The active reader joins the mathematical tradition of a laboratory being a notebook plus a compass and ruler or a dynamic geometry program on a computer New ideas await exploration and here are examples Geometry by Construction Object Creation and Problem solving in Euclidean and Non Euclidean GeometriesGeometry by Construction: Object Creation and Problem-solving in Euclidean and Non-Euclidean Geometries

Geometry by Construction: Object Creation and Problem-solving in Euclidean and Non-Euclidean Geometries By Dr Michael McDaniel
1627340289
9781627340281
English
150
Paperback
Geometry by Construction book pdf free
Geometry by Construction books
Geometry by Construction book pdf download
Geometry by Construction book review
Geometry by Construction booking
Geometry by Construction booklet
Geometry by Construction booker
Geometry by Construction bookworm
Geometry by Construction bookkeeping
geometry construction project pdf
geometry construction pdf
geometry construction worksheet pdf
geometry constructions practice pdf
geometry constructions worksheet pdf
introducing geometry in construction
.

#heading[2]

College geometry students professors interested in undergraduate research and secondary geometry teachers will find three rich environments in this textbook The first chapter contains many of the standards of Euclidean college geometry The second and third chapters introduce non Euclidean models where some Euclidean rules hold and others do not With emphases on constructions and proofs the reader is encouraged to create the objects under investigation and verify the results with reasoning Since both models of bent spaces exist in Euclidean geometry the reader gains facility with Euclidean moves through the whole book even while exploring non Euclidean spaces The book itself is meant to be unpacked expanded and taken further just like the problems it contains Geometry by Construction challenges its readers to participate in the creation of mathematics The questions span the spectrum from easy to newly published research and so are appropriate for a variety of students and teachers From differentiation in a high school course through college classes and into summer research.